Compute the 2D Cauchy Wavelet in frequency plane
[out] = cauchy2d(kx,ky,delta,sigma,l,m)
This function computes the 2D Cauchy wavelet in frequency plane. That is, the wavelet given by:
_
|(E(delta-pi/2) . K)^l
| * (E(-delta+pi/2) . K)^m
| * exp( - 0.5 * sigma * |K-K_0|^2 )
PSIHAT(kx,ky) = < INSIDE C(-delta,delta)
|
|0 OUTSIDE C
`-
where: E(alpha) = (cos(alpha), sin(alpha))
K = (kx, ky)
K_0 = (l+m)^0.5 * (sigma - 1)/sigma * (1,0)
C(-delta,delta) = the cone supported by E(delta)
and E(-delta)
The wavelet parameters are thus:
This function is used by the cwt2d routine which compute continuous wavelet transform in 2D.
>> step = 2*pi/128; >> [kx,ky] = meshgrid( -pi : step : (pi-step) ); >> wav = cauchy2d(kx,ky,pi/6,1,4,4); >> imagesc(wav);
cauchy2d cwt2d dergauss2d dog2d esmex2d gauss2d gaussx2d gaussz2d meshgrid mexican2d morlet2d samcwt2d sarcwt2d sdog2d sqdog2d